
TÉCNICAS DE ESTUDIO GENÉTICO CITOGENÉTICA Y GENÉTICA MOLECULAR ¿EN QUÉ PUNTO ESTAMOS?

- Conocimiento del genoma y bases moleculares de la patología genética humana
- ✓ Avances tecnológicos y nuevas metodologías (*microarrays*, secuenciación de última generación)
- Proyectos de estudio del genoma humano y su diversidad

Genoma humano:

- 46 pares de cromosomas (XX en la mujer y XY en el varón)
- Secuencia ADN: 3000 millones pb
- 19.000 genes
- Genoma mitocondrial

BASES MOLECULARES DE LA PATOLOGÍA GENÉTICA HUMANA

Enfermedades monogénicas

Autosómica dominante: NF1, Noonan

Autosómica recesiva: Fibrosis quística, déficit 21-

OH

Ligada al X: X frágil, Distrofinopatías

Mitocondrial: encefalopatía mitocondrial,

Neuropatía de Leber

Mosaicismo somático: McCune Albright

Cromosomopatías

Numéricas:

X0

+21,

Estructurales: deleciones, traslocaciones

Trastornos epigenéticos:

PraderWilli

Silver Russell:

Trastornos genómicos: microdeleciones

diGeorge/velocardiofacial

S de Williams

TÉCNICAS DE DIAGNÓSTICO GENÉTICO

De la investigación a la práctica clínica

Técnicas citogenéticas: pueden estudiar todo el material genético en los cromosomas o dirigirse al estudio de loci específicos

Técnicas de genética molecular: Posibilidad de analizar mutaciones únicas, secuencias de genes, el genoma completo de un paciente.

Elección de la técnica:

sospecha diagnóstica,

conocimiento de la causa genética más frecuente y

resolución de la técnica (ventajas y limitaciones)

Genética Molecular Secuenciación NGS

Citogenética molecular Arrays CGH FISH

Citogenética clásica Cariotipo

Citogenética clásica El cariotipo

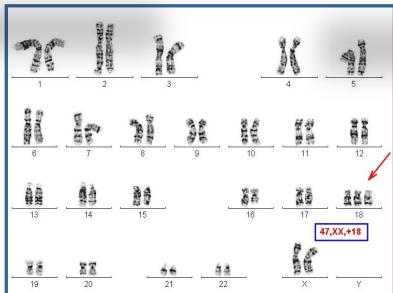
- Anomalías cromosómicas numéricas y estructurales.
- Resolución ganancias, pérdidas o cambios de posición de entre 5-10 Mb.
- Permite detectar mosaicismos, inversiones y translocaciones equilibradas
- Ampliamente utilizada en el ámbito prenatal, en estudios de infertilidad y en Oncología.
- Precisa cultivo para obtener metafases cromosómicas

DESEQUILIBRIOS CROMOSÓMICOS

Responsables del 3-5% casos de DISCAPACIDAD INTELECTUAL

- ✓ Numéricas: +21, gonosomopatías
- ✓ Estructurales: síndrome Cri-du-chat (del 5p | 5), Wolf-Hirschorn (del 4p | 6)...

FENOTIPO CROMOSÓMICO


- Problemas en el crecimiento,
- Rasgos dismórficos faciales,
- Malformaciones estructurales: cardíacas,

urogenitales y de extremidades

ESTUDIO DEL CARIOTIPO

Genética Molecular Secuenciación NGS

Citogenética molecular Arrays CGH FISH

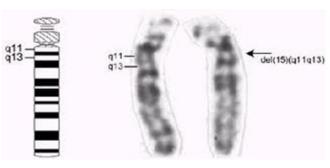
Citogenética molecular Arrays CGH FISH

Trastornos genómicos

Entidades clínicas producidas por reordenamientos en el genoma humano

Microdeleciones y microduplicaciones:

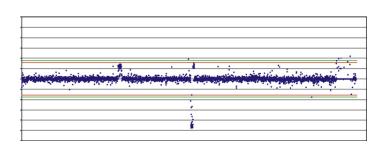
- Williams-Beuren
- diGeorge-velocardiofacial
- Potocki-Lupski:
- S. Prader-Willi/Angelman


deleción 7q11.23

deleción 22q11.2

duplicación 17p11.2

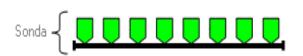
del 15q11-q13



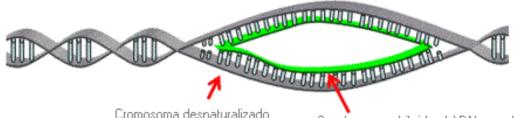
la mayoría submicroscópicas

CITOGENÉTICA MOLECULAR

FISH


aCGH

- Las técnicas de hibridación fluorescente y microarrays de CGH permiten diagnosticar desequilibrios crípticos submicroscópicos
- Han permitido identificar numerosos síndromes de microdeleción/microduplicación


HIBRIDACIÓN FLUORESCENTE IN SITU

SONDA: segmento de ADN marcado con fluorescencia que es complementario a la región cromosómica de interés.

Marcaje fluorescente

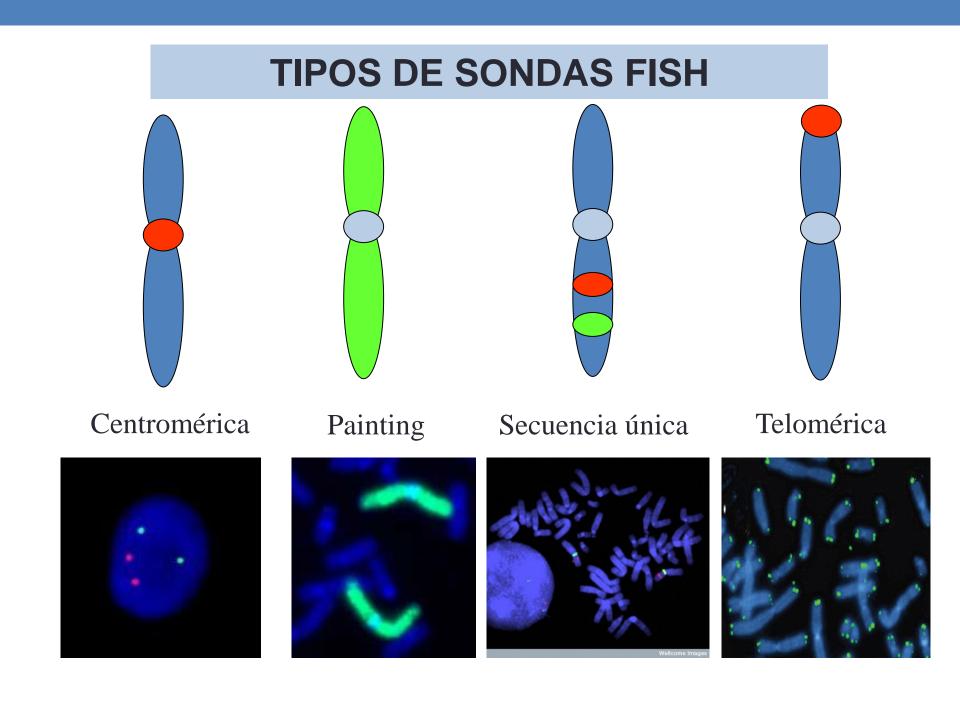
Segmento de ADN cromosómico

La **HIBRIDACIÓN** tiene lugar entre la sonda y el ADN cromosómico complementario

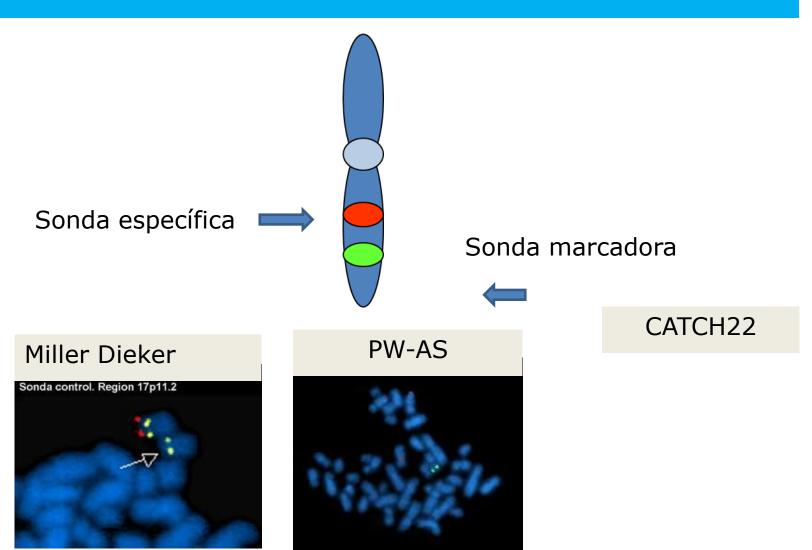
Sonda que se hibrida al ADN complementario

Señal verde: control normal

Señal rosa: región cromosómica de interés

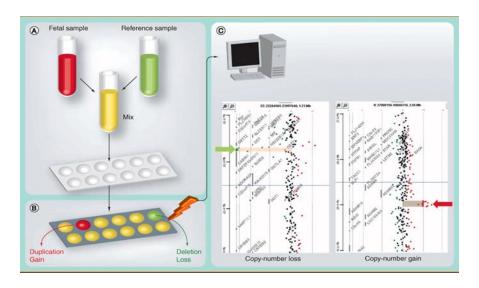

Las SEÑALES FLUORESCENTES indican la

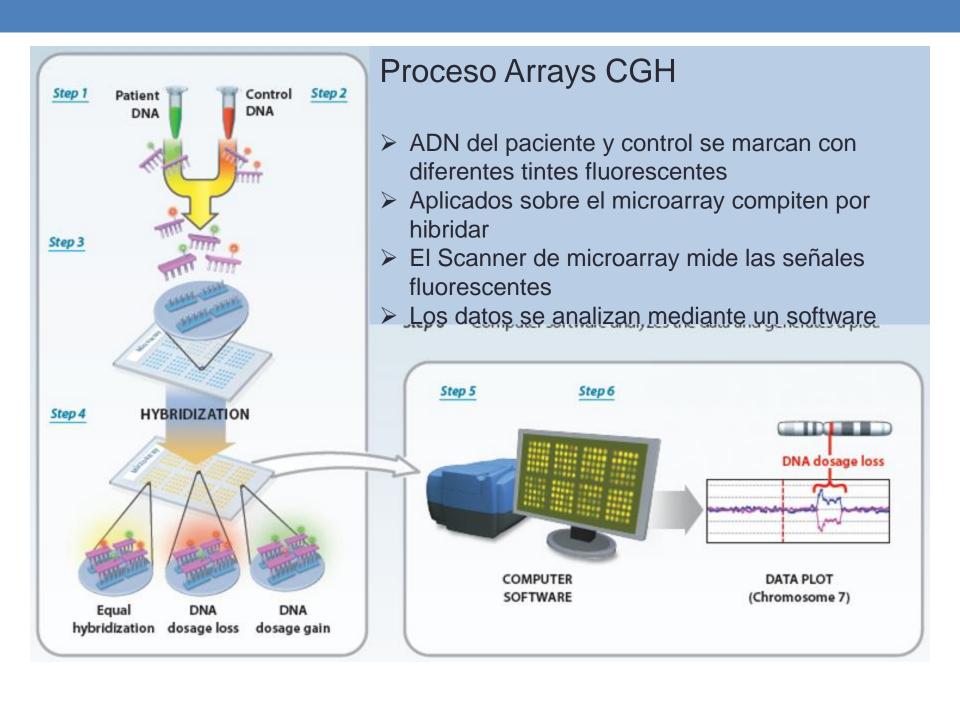
Control normal: Dos señales verdes Dos señales rosa



Paciente con deleción: Dos señales verdes Una señal rosa

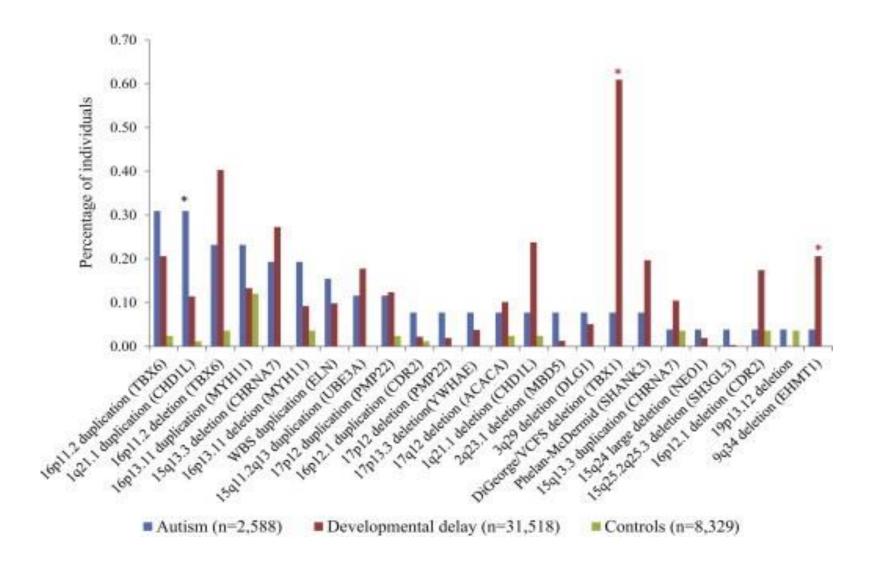
presencia de ADN cromosómico complementario




DIAGNÓSTICO SÍNDROMES MICRODELECIÓN MEDIANTE HIBRIDACIÓN FLUORESCENTE IN SITU (FISH)

CGH array

- · Al igual que el cariotipo, estudia globalmente el genoma.
- Tiene más resolución que el cariotipo
 - Cariotipo molecular
- No necesita cultivo
- Alta especificidad y sensibilidad



LIMITACIONES aCGH

SOLO DETECTA GANANCIASY PÉRDIDAS.

NO DETECTA:

- mutaciones puntuales
- > translocaciones equilibradas
- > inversiones equilibradas
- > duplicaciones o delecciones inferiores al rango de resolución.
- > alteraciones presente en mosaico <40%.
- **VOUS** (variantes significado incierto)

Técnica	Aplicaciones	Ventajas	Desventajas		
Cariotipo	Identificación cromosomopatías • estructurales • numéricas	Bajo costoGenoma completo	Resolución limitadaPrecisa células en división		
FISH	 Determina presencia, nº de copias localización de secuencias ADN 	Alta sensibilidad y especificidadCélulas en división e interfase	 Limitada a la secuencia que se investiga 		
aCGH	Detecta pérdidas y ganancias de ADN	 Genoma completo No precisa células en dvisión 	 Alto coste No detecta reorganizaciones equilibradas ni mosaicos de bajo grado 		

Genética Molecular Secuenciación NGS

Citogenética molecular Arrays CGH FISH

Genética Molecular Secuenciación NGS

Enfermedades monogénicas

- El OMIM (Online Mendelian inheritance of Man) base de datos de fenotipos y genes mendelianos
- De muchas pero no todas se conoce base molecular y la descripción del fenotipo.
- Herencia:
 - Autosómica recesiva (necesario que las dos copias de un gen estén alteradas para que se produzca la enfermedad),
 - Autosómica dominante (el fenotipo aparece con solo una de las dos copias del gen alterada)
 - Ligada al cromosoma X (dominante, recesiva o intermedia)

OMIM Entry Statistics

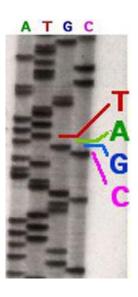
Number of Entries in OMIM (Updated May 8th, 2018):

MIM Number Prefix	Autosomal	X Linked	Y Linked	Mitochondrial	Totals
Gene description *	15,067	729	49	35	15,880
Gene and phenotype, combined +	66	0	0	2	68
Phenotype description, molecular basis known #	4,877	325	4	31	5,237
Phenotype description or locus, molecular basis unknown %	1,455	124	5	0	1,584
Other, mainly phenotypes with suspected mendelian basis	1,660	105	2	0	1,767
Totals	23,125	1,283	60	68	24,536

^{*:} La entrada corresponde a un gen.

^{#:} Se describe un fenotipo que, normalmente, está representado por más de un locus.

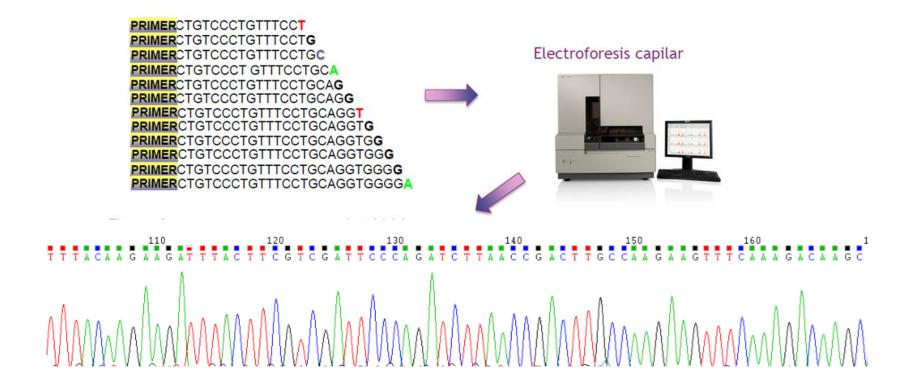
^{+:} Se conocen la secuencia y le fenotipo del gen.


^{%:} La entrada describe un fenotipo del cual no se conoce la base molecular.

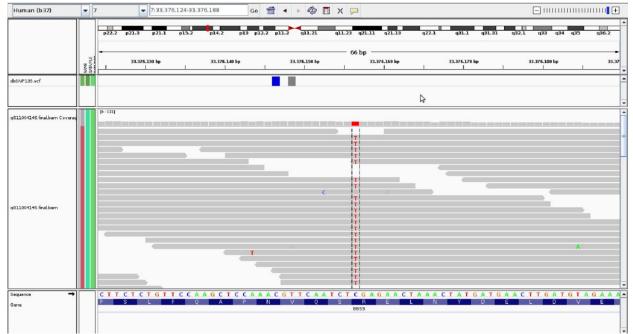
Genética molecular

Secuenciación SANGER

Permite conocer el orden en que se presentan los nucleótidos en el ADN


PRIMERCTGTCCCTGTTTCCTG
PRIMERCTGTCCCTGTTTCCTGC
PRIMERCTGTCCCTGTTTCCTGCA
PRIMERCTGTCCCTGTTTCCTGCAG
PRIMERCTGTCCCTGTTTCCTGCAGG
PRIMERCTGTCCCTGTTTCCTGCAGGT
PRIMERCTGTCCCTGTTTCCTGCAGGTG
PRIMERCTGTCCCTGTTTCCTGCAGGTGG
PRIMERCTGTCCCTGTTTCCTGCAGGTGGG
PRIMERCTGTCCCTGTTTCCTGCAGGTGGGGG
PRIMERCTGTCCCTGTTTCCTGCAGGTGGGGGG
PRIMERCTGTCCCTGTTTCCTGCAGGTGGGGGGGGGIMERCCTGTCCCTGTTTCCTGCAGGTGGGGGGGGGIMERCCTGTCCCTGTTTCCTGCAGGTGGGGA

Genética molecular


Electroforesis capilar

Utilizada para llevar a cabo la secuenciación del genoma humano planteado en el Proyecto Genoma Humano (1985-2003)

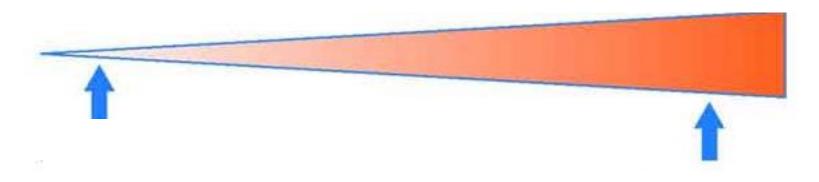
SECUENCIACIÓN MASIVA (NGS)

- Se obtienen múltiples secuencias cortas (100 pb) de un modo paralelo, produciendo millones de lecturas al mismo tiempo y un coste muy bajo
- Una vez ensambladas estas secuencias se confrontan a un genoma de referencia.

Aplicaciones secuenciación masiva

Estudio de genomas completos,

Estudio de exomas o regiones codificantes de todo el genoma,


Paneles de genes implicados en el desarrollo de patologías raras y/o

cánceres (targeted sequencing),

Posibles resultados de los test genéticos

No mutación ---- Benigna ---- Probablemente ---- VOUS ---- Probablemente ---- Patogénica benigna patogénica

Menor — UTILIDAD CLÍNICA — Mayor

El diagnóstico genético correcto.

- Historia clínica exhaustiva
- Historia familiar detallada: árbol familiar
- Exploración física completa y detallada, deberá incluir medidas antropométricas y toma de fotografías
- En el caso de que afecten a sistemas u órganos específicos consulta especializada.
- Estudios complementarios (Imagen, bioquímicos u hormonales)
- Estudios genéticos específicos, citogenéticos o moleculares.

En un 40-50% de los casos estudiados no es posible llegar a un diagnóstico genético específico

¿ Cómo contactar?

- Buzón de citas para la consulta
 - Volante de petición habitual
 - Solicitud electrónica (Selene / Millenium)
 - ☐ Teléfono de contacto con Administración Genética Teléfono Hospital: 985108000
 - Extensión 37491
- Comentar un caso con Genética Clínica
 - ☐ Teléfono directo 985667126
 - Extensión 38820
- Correo electrónico
 - Envío de pruebas complementarias, informes, historias ...
 - genetica.gae4@sespa.es